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A novel framework for solving variational problems and partial differential equa-
tions for scalar and vector-valued data defined on surfaces is introduced in this paper.
The key idea is to implicitly represent the surface as the level set of a higher dimen-
sional function and to solve the surface equations in a fixed Cartesian coordinate
system using this new embedding function. The equations are then both intrinsic to
the surface and defined in the embedding space. This approach thereby eliminates the
need for performing complicated and inaccurate computations on triangulated sur-
faces, as is commonly done in the literature. We describe the framework and present
examples in computer graphics and image processing applications, including texture
synthesis, flow field visualization, and image and vector field intrinsic regularization
for data defined on 3D surfaces.g 2001 Eisevier Science
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1. INTRODUCTION

In a number of applications, variational problems and partial differential equations ne
to be intrinsically solved for data defined on arbitrary manifolds, three-dimensional surfa
in particular. Examples of this exist in the areas of mathematical physics, fluid dynami

759

0021-9991/01 $35.00
(© 2001 Elsevier Science
All rights reserved.



760 BERTALMIO ET AL.

image processing, medical imaging, computer graphics, and pattern formation. In comp
graphics, examples of this include texture synthesis [63, 67], vector field visualization [2
and weathering [21]. In other numerous applications, data defined on surfaces often ne
be regularized, e.g., as part of a vector field computation or interpolation process [49, |
for inverse problems [27], or for surface parameterization [22]. These last regularizat
examples can be addressed by solving a variational problem defined on the surface, ¢
corresponding gradient-descent flow on the surface, using, for example, the well-develc
theory of harmonic maps [24, 25], which has recently been demonstrated to be of use
image processing and computer graphics applications as well (e.g., [13, 22, 47, 54, 57, ¢
All these equations are generally solved on triangulated or polygonal surfaces. That is,
surface is given in polygonal (triangulated) form, and the data are discretely defined ol
Solving the problems then in this representation involves the nontrivial discretization of 1
equations in general polygonal grids, as well as the difficult numerical computation of ott
guantities such as projections onto the discretized surface (when computing gradients
Laplacians for example). Although the use of triangulated surfaces is extremely popt
in all areas dealing with 3D models, especially in computer graphics, there is still |
widely accepted technique for computing simple differential characteristics such astange
normals, principal directions, and curvatures; see, for example, [19, 41, 60] for a few
the approaches in this direction. On the other hand, it is widely accepted that compu
these objects for iso-surfaces (implicit representations) is straightforward and much nr
accurate and robust. This problem in polygonal surfaces becomes even bigger whe
addition to computes these first- and second-order differential characteristics of the sur
we also have to use them to solve variational problems and PDEs for data defined or
surface. Moreover, virtually no analysis of numerical PDEs on nonuniform grids exis
in the generality needed for the wide range of applications mentioned above, makin
difficult to understand the behavior of the numerical implementation and its proximity (
lack thereof) to the continuous model.

In this paper we present a new framework for solving variational problems and PDEs
scalar and vector-valued data defined on surfaces. We use, instead of a triangulated/poly
representation, an implicit representation: our surface will be the zero level set of a hig
dimensionakembeddindunction (i.e., a 3D volume with real values, positive outside the
surface and negative inside it). Implicit surfaces have been widely used in many areas
cluding computational physics [43], computer graphics [7, 28, 66], and image process
[52], as an alternative efficient representation to polygonal surfaces. We smoothly ext
the original (scalar or vector-valued) data lying on the surface to the 3D volume, ad
our PDEs accordingly, and then perform all the computations on the fixed Cartesian ¢
corresponding to the embedding function. These computations are nevertheless intri
to the surface. The advantages of using the Cartesian grid instead of a triangulated r
are many: we can use well-studied numerical techniques, with accurate error, stability,
robustness measures; the topology of the underlying surface is not an issue; and we
derive simple, accurate, robust, and elegant implementations. If the original surface is
already in implicit form, and it is for example triangulated, we can use any of a nur
ber of implicitation algorithms that achieve this representation given a triangulated inp
e.g., [23, 37, 59, 68]. For example, the public domain software [38] can be used. If the ¢
are just defined on the surface, an extension of them to the whole volume is also e
achieved using a PDE, as we will later see. Therefore, the method proposed here w
as well for nonimplicit surfaces after the preprocessing is performed. This preprocess
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is quite simple and no complicated regridding needs to be done to go from one surf
representation to another (see below). Finally, we will solve the variational problem or P
only in a band surrounding the zero level set (a classical approach; see [46]). Theref
although we will be increasing the dimension of the space by one, the computations ren
of the same complexity, while significantly improved accuracy and greater simplicity &
obtained.

1.1. The Background and Our Contribution

Representingeformingsurfaces as level sets of higher dimensional functions was intr
duced in [43] as a very efficient technique for numerically studying the deformation (s
[44] for a review of this technique and also [66] for studies on the deformation and manij
lation of implicit surfaces for graphics applications). The idea is to represent the surf:
deformation via the embedding function deformation, which adds accuracy, robustn
and, as expected, topological liberty. When the velocity of the deformation is given by
minimization of an energy, the authors in [70] proposed a “variational level set” methc
where they extended the energy (originally defined only on the surface) to the whole sp.
This allows the implementation to be made in the Cartesian grid. The key to this appro
is to go from a “surface energy” to a “volume energy” by using a Dirac’s delta function th
concentrates the penalization on the given surface.

We will follow this general direction with our fixed, nondeforming surfaces. In our cas
whatis being deformed isthe (scalar or vector-valued) data on the surface. If this deforma
is given by an energy-minimization problem (as is the case in data smoothing applicatio
we will extend the definition of the energy to the whole 3D space, and its minimization w
be achieved with a PDE, which, despite its being intrinsic to the underlying surface, is &
defined in the whole space. Therefore, it is easily implementable. This is straightforwe
as opposed to approaches where one maps the surface data onto the plane, perforr
required operations there, and then maps the results back onto the triangulated represen
of the surface or to approaches that attempt to solve the problem directly on a polygc
surface.

The new framework proposed here also tells us how to translate into surface te
PDEs that we know work on the plane but which do not necessarily minimize an ene
(e.g., texture synthesis or flow visualization PDES). Instead of running these PDEs
the plane and then mapping the results onto a triangulated representation of the surfac
running them directly on the triangulated domain, we obtain a 3D straightforward Cartes
grid realization that implements the equation intrinsically on the surface and has an accu
that depends only on the degree of spatial resolution.

Moreover, we consider that for computing differential characteristics and solving PD
even for triangulated surfaces, it might be appropriate to run an implicitation algoritt
as any of the ones used for the examples in this paper and then work on the imp
representation. Current algorithms for doing this, some of them publicly available [38],
extremely accurate and efficient.

The contribution of this paper is therefore a new technique to efficiently solve a commnr
problem in many computational physics and engineering applications: the implementa
of variational problems and PDEs on 3D surfaces. In particular, we show how to transfc
any intrinsic variational or PDE equation into its corresponding one for implicit surfaces.
this paper we are then proposing a new framework to better solve existent problems ar
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help in building up the solutions for new ones. To exemplify the technique and its general
we implement and extend popular equations previously reported in the literature. Here
solve them with our framework, while in the literature they were solved with elaborate
discretizations on triangulated representations.

Before proceeding, we should comment on a few of the basic characteristics of
framework. First, as stated before, although we solve the equations in the embedding sy
the basic computational complexity of our technique is not increased, since all operati
are performed on a narrow band surrounding the given surface. Second, since the wo
now on a Cartesian grid, classical numerical analysis results on issues such as robus
and stability apply here as well. Note that for triangulated representations, new theoret
results are needed to justify the common methods proposed in the literature, while with
framework, classical and well-established numerical techniques can be made as accl
robust, and computationally efficient as dictated by the application.

2. THE FRAMEWORK

2.1. Surface and Data Representation

As mentioned before, our approach requires us to have an implicit representation of
given fixed surface, and the data must be defined in a band surrounding them and not ju
the surface. The implicit surfaces used in this paper have been derived from public-don
triangulated surfaces via the computation of a (signhed) distance fungtiony, z) to the
surfaceS. Arriving at an implicit representation from a triangulated one is currently not
significant issue; there are publicly available algorithms that achieve it in a very efficie
fashion. To exemplify this, in our paper we have used several of these techniques. For s
surfaces the classical Hamilton—Jacobi equati®n/ || = 1 was solved on a predefined
grid enclosing the given surface via the computationally optimal approach devised in [6
Accurate implicit surfaces from triangulations of the order of ttangles are obtained in
less than 2 min of CPU time with this technique. Alternatively, we used the implementati
of the Closest Point Transform available in [38]. The teapot and knot surfaces were obtai
from unorganized data points using the technique devised in [71]. We therefore assl
from now on that the three-dimensional surfa@ef interest is given in implicit form as
the zero level set of a given functiafn: IR®> — IR. This function is negative inside the
closed bounded region defined 8yit is positive outside and is Lipschitz continuous a.e.,
with S = {x € IR®: ¥ (x) = 0}. To ensure that the data, which need not be defined outsic
of the surface originally, are now defined in the whole band, one simple possibility is
extend the data defined onS (i.e., the zero level set af) in such a form that they are
constant normal to each level setof This means that the extension satisWes- Vi = 0.
(For simplicity, we now assume to be a scalar function, although we will also address
in this paper problems where the data defined>are vector-valued. This is solved in an
analogous fashion.) To solve this we numerically search for the steady-state solution of
Cartesian PDE

%1: + sign(y) (Vu - Vi) = 0.

This technique was first proposed and used in [12]. Note that this keeps the giverodata
the zero level set of (the given surface) unchanged.
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Both the implicitation and data extension (if required at all by the given data) need to
done only once off line. Moreover, they will remain for all applications that need this tyj
of data.

2.2. A Simple Example: Heat Flow on Implicit Surfaces

We will exemplify our framework with the simplest case, the heat flow or Laplace equ
tion for scalar data defined on a surface. For scalar datefined on the plane, that is,
u(x, y): R? » IR, itis well known that the heat flow

au
— = AU, 1
ot 1)
whereA = % + 327;‘ is the Laplacian, is the gradient-descent flow of the Dirichlet integre
1 2
5 [ _IVul=dxdy, 2
2 Jr2

whereV is the gradient.

Equation (1) performs smoothing of the scalar datand this smoothing process pro-
gressively decreases the energy defined in Eq. (2). If we now want to smooth scalar dz
defined on a surfac8, we must find the minimizer of thearmonicenergy given by

1
5 /S IVsul2ds. ®

The equation that minimizes this energy is its gradient-descent flow:

2—? = AgU. (4)
Here Vs is the intrinsic gradient ands is the intrinsic Laplacian or Laplace—Beltrami
operator. These are classical concepts in differential geometry and basically mean the ne
extensions of the gradient and Laplacian respectively, considering all derivatives intrinsi
the surface (with the natural metric). For instance, the intrinsic gradient is just the project
onto S of the regular 3D gradient while the Laplace—Beltrami operator is the project
divergence of it [53].

Classically, Eq. (4) would be implemented in a triangulated surface, giving rise to s
phisticated and elaborated algorithms even for such simple flows. We now show hov
simplify this when considering implicit representations.

Recall thatS is given as the zero level set of a functign IR®> — IR; ¥ is negative
inside the region bounded &and is positive outside with = {x € IR®: /(x) = 0}. We
proceed now to redefine the above energy and compute its corresponding gradient de
flow. Letv be a generic three-dimensional vector andHgbe the operator that projects a
given three-dimensional vector onto the plane orthogonal to

VRV
lIvi2

®)



764 BERTALMIO ET AL.

It is then easy to show that the harmonic energy (3) is equivalent to (see, for exam
[53])

1
5/5 IPy V ulf?ds, (6)

whereN is the normal to the surfacg In other wordsVsu = PyVu. That is, the gradient
intrinsic to the surfaceVs) is just the projection onto the surface of the 3D Cartesial
(classical) gradien?.* We now embed this in the functiap to get

1 1 1
f/nvsunzdsz f/uPNVunzdS: f/ | Pyy VU2 () V|| dX,
2 S 2 S 2 QelR3

whereé (-) stands for the Dirac delta function, and all the expressions above are conside
in the sense of distributions. Note that first we got rid of intrinsic derivatives by replacir
Vs by PyVu (or Py, Vu) and then we replaced the intrinsic integratiq@ 4dS) by the
explicit one ggele dx) using the delta function. Intuitively, although the energy lives in
the full space, the delta function forces the penalty to be effective only on the level se
interest. The last equality includes the embedding, and it is based on the following sim
facts:

1. Vy |[N.
2. [o8() | VY |ldx = [, dS = surface area.

In Appendix A we show that the gradient descent of this energy is given by

ou 1

ot = g ¥ e TuIvyID. @)

In other words, this equation corresponds to the intrinsic heat flow or Laplace—Beltra
for data on an implicit surface. But all the gradients in this PDE are defined in the thre
dimensional Cartesian space, not in the sur&his is why we need the data to be defined
atleaston aband around the surface). The numerical implementation is then straightforw
This is the beauty of the approach! Basically, for this equation we use a classical schen
forward differences in time and a succession of forward and backward differences in sp
(see Appendix B for details). The other equations in this paper are similarly implement
This follows techniques such as those in [50]. Once again, due to the implicit representa
and embedding in a Cartesian grid, classic numerical techniques are used, avoiding elab
projections onto discrete surfaces and discretization on general meshes, e.g., [19,
Classical numerical approaches and theoretical findings on robustness, accuracy, and
bounds apply then for our framework.

It is easy to show a nhumber of important properties of this equation:

1. Forany second embedding functipn= ¢ (v), with ¢ (0) = 0 andg’ # 0, we obtain
the same gradient descent flow. Since bptand¢ have to share the zero level set, and we
are only interested in the flow around this zero level set, this means that the flow is (loca
independent of the embedding function.

1 Note that, using this fact, we have transformed the computation of the norm of the intrinsic 2D gradient i
an equivalent 3D Euclidean computation.
2We thank F. Mfmoli for helping with this fact.
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2. If ¥ is the signed distance function, a very popular implicit representation of st
faces (obtained, for example, from the implicitation algorithms previously mentioned), t
gradient descent simplifies to

au
— =V - (PyyVu). (8)
ot
We have then obtained the basic approach for embedding intrinsic variational proble
We proceed now to embed general PDEs.

2.3. From Variational Problems to PDEs

We note that we could also have derived Eq. (7) directly from the harmonic maps flo

5t = Agu,

via the simple geometry exercise of computing the Laplace—Belttgmifor S in implicit
form (this is simply done by means of the projected derivatives as explained above, ¢
[53]). That is, the same equation is obtained when embedding the energy and then c
puting the gradient descent and when first looking at the gradient descent followed by
embedding of all of its components. This property is of particular significance. It basica
hints at how to solve other PDES, not necessarily gradient-descent flows, for data def
on implicit surfaces. All that we need to do is to recompute the components of the PDE
implicit representations of the surface. Note that in this way, conceptually, we can rede
classical planar PDEs on implicit surfaces, making them both intrinsic to the underlyi
surface and defined on the whole space.

2.4. Anisotropic Diffusion on Implicit Surfaces

From this very simple example on the Laplace—Beltrami flow we have seen the key p«
of our approach. If the process that we want to implement comes from the minimizat
of an energy, we derive a PDE for the whole space by computing the gradient-descer
the whole-space extension of that energy. Otherwise, given a planar PDE we recompuf
components for an implicit representation of the surface. For instance, anisotropic diffus
can be performed on the plane by

au Vu
= (||Vu||>’ ®)

which minimizes the TV energy .. | Vu| dx dy (see [50] and also [2, 6, 48] for related
formulations). If we now want to perform intrinsic anisotropic diffusion of scalar data o
a surfaceS, we can either recompute the gradient-descent flow for the intrinsic TV ener
J5 IVsul dS, which forS inimplicit form becomeg, _gs || Pyy Vull§ () [V || dx, or just
substitute into Eq. (9) the corresponding expressions as explained in the previous sec
Either way we obtain the same result,

au 1 Py, Vu
— = v. ( A4 ||wn>, (10)
VYl I Py Vul
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which is valid in the embedding Euclidean space. Note that gepdraimonic mapshat

is, maps forL p, p # 2, norms of the intrinsic surface gradient, have been studied in tt
literature as well, e.g., [13, 17, 29, 31, 57]. In the following section additional equatio
will be presented.

3. EXPERIMENTAL EXAMPLES

We now exemplify the framework just introduced for a number of important cases. T
numerical implementation used is quite simple and requires a few lifég-af code. The
CPU time required for the diffusion examples is a few seconds on a PC (512 Mb RA
1 GHz) under Linux. For the texture synthesis examples, the CPU time ranges from a
minutes to one hour, depending on the pattern and parameters chosen. All the volu
used contain roughly 138/0xels. Note once again that due to the use of only a narro
band surrounding the zero level set, the order of the algorithmic complexity remains
same. On the other hand, the use of straightforward Cartesian numerics reduces the o
algorithmic complexity, improving accuracy and simplifying the implementation.

3.1. Diffusion of Scalar Images on Surfaces

The use of PDEs for image enhancement has become one of the most active rese
areas in image processing [11, 52]. In particular, diffusion equations are commonly u
for image regularization, denoising, and multiscale representations (representing the in
simultaneously at several scales or levels of resolution). This started with the works
[36, 65], where the authors suggested the use of the linear heat flow (1) for this task, wt
u represents the image gray values (the original image is used as initial condition). Not¢
course that this is the basic regularization needed for inverse problems defined on surfz
e.g., [27]. By deriving the heat flow or Laplace—Beltrami equation on implicit surface
we then derive the basic PDE used for image processing as well as the fundamental
regularization energy/flow. As we have seen, this flow is the gradient descent of (2),
the generalizations of these equations for data on the surface are given by (4) anc
respectively. In implicit form, the heat flow on surfaces is given by (7). Figure 1 shows
simple example of image diffusion on a surface. Please note that thig éxjuivalent to
performing 3D smoothing of the data and then looking to see what happengd@uar
flow, though using extended 3D data, performs smootHiregtly on the surface and is an

FIG. 1. Intrinsic isotropic diffusion. Left: original image. Middle: after 15 diffusion steps. Right: after
50 diffusion steps.
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FIG. 2. Intrinsic anisotropic diffusion with constraints (automatic stop term). Left: original noisy image
Middle: after 50 diffusion steps. Right: after 90 diffusion steps. Notice how the diffusion stops and informatior
not smeared.

intrinsic heat flow (Laplace—Beltrami on the surface and not Laplace on the 3D space).
complete details of the numerical implementation of this flow are given in Appendix B (tf
will once again show how the implementation is significantly simplified with the framewol
described here).

In Fig. 2 we show an example for the anisotropic flow (10). In this case, we have a no
image with known variance. We can then easily add this constraint to the flow and the ¢
responding variational formulation. The energy corresponding to this constraint is given

A
> /S(u —Up)?dsS

(A € Ris a parameter angh is the given noisy image), which after it is made intrinsic anc
implicit becomes

A
5 / (U — U5 (Y [V dx.
R3

To incorporate the constraint on the noise variance into the diffusion/denoising process
add to the flow (10) the corresponding Euler—Lagrange of this energy, given by

A(U — Ug).

Note in the figure how the noise is removed while the image details are preserved, as
pected from an anisotropic flow. The parameteis estimated extending the technique
suggested in [50] (see Appendix C).

The same approach, that of anisotropic diffusion with a stopping term given by t
constraint, may be used to perform intrindieblurring see [15].

We should note before proceeding that [35] also showed how to regularize images def
on a surface. The author’'s approach is limited to graphs (not generic surfaces) and
applies to level set based motions. The approach is simply to project the deformation of
data on the surface onto a deformation on the plane.

3.2. Diffusion of Directional Data on Surfaces

A particularly interesting example is obtained when we have unit vectors defined on
surface. That is, we have data of the farmS — S"~1. Whenn = 3 our unit vectors lie on
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the sphere. Examples of this sort of data include principal directions (or general directic
fields on 3D surfaces) and chromaticity vectors (normalized RGB vectors) for color imag
defined on the surface. This is also one of the most studied cases of the theory of harm
maps due to its physical relationship with liquid crystals, and it was introduced in [5
for the regularization of directional data unit vectors on the plane (see also [13, 47, 5
This framework of harmonic maps was used in computer graphics for texture mapping
surface parameterization, as pointed out earlier.
We still want to minimize an energy of the form

/||V$u||pd8,
S

though in this cas&: is the vectorial gradient and the minimizer is restricted to be a un
vector. It is easy to show, e.g., [8, 55] that the gradient descent of this energy is given
the coupled system of PDEs
8Ui . _2 .

T divs (| VsullP=“Vsui) + ui || Vsull®,  1<i<n.
This flow guarantees that the initial unit vectgk, y, z, 0) remains a unitvectar(x, y, z, t)
all the time, thereby providing an equation for isotropfc=€ 2) and anisotropicif = 1)
diffusion and regularization of unit vectors on a surface.

We can now proceed as before and embed the suS&ao¢o the zero level set of,
obtaining the following gradient-descent flows (see Appendix D):

U 1 vaVUi

= iar” (eesars 19V1) + ulesvar® )
Note once again that although the regularization is done intrinsically on the surface, 1
equation only contains Cartesian gradients. An example of this flow for anisotropic diffusi
of principal direction vectors is given in Fig. 3. On the top, we see the surface of a bur
with its correspondent vector field for the major principal direction. Any irregularity ot
the surface produces a noticeable alteration of this field, as can be seen in the dete
and b. In the details’and B, we see the result of applying the flow (11). Once again, th
implementation of this flow with our framework is straightforward, while it would require
very sophisticated techniques on triangulated surfaces (techniques that, in addition, ar
supported by theoretical results).

Following also the work [57, 58] for color images defined on the plane, we show
Fig. 4 how to denoise a color image painted on an implicit surface. The basic idea is
normalize the RGB vector (a three-dimensional vector) to a unit vector representing
chroma and to diffuse this unit vector with the harmonic maps flow{The corresponding
magnitude, representing the brightness, is smoothed separately via scalar diffusion flow
those presented before (e.g., the intrinsic heat flow or the intrinsic anisotropic heat flo
That is, we have to regularize a map o8 (the chroma) and another one oo (the
brightness).

3 We renormalize at every discrete step of the numerical evolution to address deviations from the unit norm
to numerical errors [16]. We could also extend the framework in [1] and apply it to our equations.
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P4
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FIG. 3. Intrinsic vector field regularization. Top: original field of major principal direction of the surface
Detailsa andb: original field. Detailsa’ andb'’: after anisotropic regularization.

3.3. Pattern Formation on Surfaces via Reaction—Diffusion Flows

The use of reaction—diffusion equations for texture synthesis became very popula
computer graphics following the works of Turk [63] and Witkin and Kass [67]. These worl
follow original ideas by Turing [62], who showed how reaction—diffusion equations can |
used to generate patterns. The basic idea in these models is to have a number of “chem
that diffuse at different rates and that react with each other. The pattern is then synthes
by assigning a brightness value to the concentration of one of the chemicals. The authc
[63, 67] used their equations for planar textures and textures on triangulated surfaces
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FIG. 4. |Intrinsic vector field regularization. Top: original color image. Middle: heavy noise has been added
the three color channels. Bottom: color image reconstructed after 20 steps of anisotropic diffusion of the chr
vectors. Please see the journal website to view the color image.

using the framework described here, we can simply create textures on (implicit/implicitize
surfaces, without the elaborated schemes developed in those papers.
Assuming a simple isotropic model with just two chemiaalsandu,, we have

ou
a—tl = F(uy, Uz) + D1Au;,
auy
i G(ug, Up) + DaAuUy,

4 Note that this is not the scheme proposed in [45], where the texture is created in the full 3D space. Here
texture is created via reaction—diffusion flows intrinsic to the surface, whereas just the implementation is on
embedding 3D space.
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FIG. 5. Texture synthesis via intrinsic reaction—diffusion flows on implicit surfaces. Top: isotropic. Botton
anisotropic. Pseudo-color representation of scalar data is used. The numerical values used in the comput
wereD; = 1.0, D, = 0.0625 s = 0.025 8 = 120+ 0.1, andu;(0) = u,(0) = 4.0.

whereD; and D, are two constants representing the diffusion rateskarehd G are the
functions that model the reaction.

Introducing our framework, ifi; andu, are defined on a surfaceimplicitly represented
as the zero level set @f we have

ou 1
—— =F Di——V . (Py,V \Y 12
T (U, uz) + A (Pyy V[V, (12)
dUo 1

= G(Ug, Up) + D2-——V - (Pyy VU2 [ VY ). (13)

ot vy
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For simple isotropic patterns, Turk [63] selected

F(ug, u) = s(16 — usuy),

G(ug, Up) = s(uilz — Uz — B),

wheres is a constant anfd is a random function representing irregularities in the chemice
concentration. Examples of this, for implicit surfaces, are given in Fig. 5 (the coupled PD
shown above are run until steady state is achieved). To simulate anisotropic textures, ins
of using additional chemicals as in [63], we use anisotropic diffusion, as suggested in [€
For this purpose, we replace Eq. (12) with

au 1

¢ = Flunup) + Dy ¥ - (@ Pey Vund V41, (14)
whered is a vector field tangent to the surface, e.g., the field of the major principal directit
(which for our examples has been also accurately computed directly on the implicit surfe
using the technique proposed in [40]). Note how this particular selection of the anisotro
reaction—diffusion flow direction provides a texture that helps the shape perception of
object. Additional patterns can be obtained with different combinations of the reaction ¢
diffusion parts of the flow.

3.4. Flow Visualization on 3D Surfaces

Inspired by the work on line integral convolution [9] and that on anisotropic diffusio
[48], the authors of [20] suggested using anisotropic diffusion to visualize flows in tw
and three dimensions. The basic idea is, starting from a random image, one anisotropi
diffusesitin the directions dictated by the flow field. The authors presented very nice res
both in two dimensions (flows on the plane) and three dimensions (flows on a surface),
once again using triangulated surfaces which introduce many computational difficulti

FIG.6. Flow visualization on implicit 3D surfaces via intrinsic anisotropic diffusion flows. Left: flow aligned
with the major principal direction of the surface. Right: flow aligned with the minor principal direction of the
surface. Pseudo-color representation of scalar data is used.
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In a straightforward fashion we can compute these anisotropic diffusion equations on
implicit surfaces with the framework introduced here, and some results are presente
Fig. 6. Note the complicated topology and how both the inside and outside parts of
surfaces are easily handled with our implicit approach. Also note that, when we cho
the vector field to be that of one of the principal directions, the result emphasizes
surface shape.

4. CONCLUDING REMARKS

In this paper, we have introduced a novel framework for solving variational probler
and PDEs for data defined on surfaces. The technique borrows ideas from the leve
theory and the theory of intrinsic flows via harmonic maps. The surface is embedc
in a higher dimensional function, and the Euler—Lagrange flow or PDE is solved in t
Cartesian coordinate system of this embedding function. The equations are simultanec
intrinsic to the implicit surface and defined on the embedding Cartesian space. With
framework we enjoy accuracy, robustness, and simplicity, as expected from the compute
of differential characteristics on iso-surfaces (implicit surfaces) and the use of classical
well-established numerical techniques in Cartesian grids. In addition to presenting
general approach, we have exemplified it with equations arising in image processing
computer graphics.

We believe that this new framework opens up a large number of theoretical and pract
guestions. Inthe theoretical arena, we need to extend the large amount of results availab
harmonic maps (see, for example, [57] for a review on this) to the “implicit harmonic map
equationsintroduced here. We would also like to investigate the effect of perturbations or
surface (zero level set) on the solutions of the intrinsic PDE. This is crucial to understanc
the desired accuracy of surface implicitation algorithms. We expect that, as with the le
set theory (e.g., [14, 26]), these theoretical results will follow after the presentation of |
framework in this paper. On the practical side, we are currently addressing other rele
equations that appear in the mathematical physics, image processing, and computer gre
literature. For example, we are investigating how to extend the use of harmonic maps
texture mapping (and not just texture synthesis). This was done for triangulated surfe
in [3, 22, 30], and we plan to extend this to implicit surfaces via the implicit framewor
introduced here. We are also interested in investigating threshold dynamics and convolut
generated motions [34, 42, 51] for implicit surfaces. Other PDEs, such as those for im
inpainting [4] or image segmentation [10], can be extended to work on implicit surfac
following the theory introduced here, and we would expect the same quality of results t
were obtained on the plane. We could also use this framework to experimentally st
results as those in [33]. Finally, the use of the approach presented here for regularize
in inverse problems, e.g., [27], is of interest as well. These issues will be reported
elsewhere.

In conclusion, we should note that it is natural to ask about the target manifold for 1
most general form of harmonic maps, when this target is not just the Euclidean spac
a unit ball, but a general hypersurface. In [39] we have shown how to extend the frar
work introduced here to arbitraiyplicit target surfaces. Note also that general motior
of curves on implicit surfaces is studied in [5, 15]. These works, together with the o
here presented, provide then the basic framework for solving generic PDEs on impl
surfaces.
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APPENDIX A

Heat Flow on Implicit Surfaces

Considering

1
E(u) = 5/ I Pey VU[IZ (W) | V|| dX,
QelR®
and withu a perturbation ofi, we have

dt

E(U 4 tp) = /va,,,w. Puy Vi3 (¥) [ V|| dx

Vi - Vi
= Py,Vu.-(Vuy — —V 1) \% d
/Q( — ( T w)) W IVl dx

=/(pwvu.vma<w>||w||dx

Vi -
IIVWI2

:/(PWVU-VM)S(I/f)IIVI/fIIdX
Q

t=0

/(Pw,w Vo)LV [y dx

—/ V- (Pyy VUs () IV [ dX
Q
—/V-(PW/VUIIVWII)S(W)MdX
Q
= [ Poyvu- VS @Il dx
Q
= —/ V- (Pyy VU VY DS (Y dX
Q
= / 1 ———V - (Pyy VU|| V¢ ) dS.
T Jsceo IV Y :
Since this expression has to be zero foralive conclude that at the zero level set/qf

——V - (Py, VU[Vy|) =0,
2 (Poy VUIIVYID

and we make a natural extension to the whole dor@ely considering this to hold on t.
We then obtain the gradient descent for the “implicit harmonic energy”:

au

i ”VMV (Poy VUV D). (15)

5We have assumed thiVy/|| # 0O, at least on a band surrounding the zero level set. This assumption is val
since we can make the embedding function a distance functiéiy || = 1), or we can simply multiplyy by
another function that guarantees that the zero leve§ sepreserved and that the gradient of the new embeddinc
function is not zero.
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APPENDIX B

Numerical Implementation of the Heat Flow on Implicit Surfaces

We now provide details on the numerical implementation of the intrinsic heat flow ¢
implicit surfaces. All other equations reported in this paper are similarly implemente
Recall that all equations are on Cartesian grids, thereby permitting the use of class
numerics. We work on a cubic gridkk = Ay = Az = 1), using an explicit scheme, where
we compute the value af; , = u(i Ax, jAy, kAz, nAt) based only on previous values
(t = (n — 1) At) of its neighbors, i.e., forward time differences.

First, we compute the 3D gradientwfusing forward differences:

n _ n _ n n n n n n
Vi = VUl = (U= U e U joai = U e U s — U )

We compute the vectd\(i, j, k), which gives the direction of the (outward) normal to
the isosurface ofr at the point(, j, k):

1
Ni,jk = V¥ijk = E(l//i+1,j,k —Yi—1jk Yij+1k — Vi j—Lk» Vi jk+1 — ¥i,jk=1)-

Here we have used central differences. Note that, sinée fixed, N(i, j, k) does not
change in time and we need only to compute it once. Its norhig k|| = (Zﬁqzl(Ni,j,k
[m])z)%. The square brackets denote the components of the vector. Then we compute
intrinsic gradient, i.e., we proje&tu onto the plane normal tN:

S Nijm] - i j[m]
(P\W) i = Vi k= ( n IN: K2 Ni,j k-

Finally, we use a backward-differences implementation of the divergence:
VWi jk = wijk[1] — wi—1jk[1] + wi jk[2] — wi j-1[2] + wij«[3] — wi jk-1[3].
With forward time differences, the numerical implementation of the heat flow on implic

surfaces (Eq. (7)) is then

1
1
ki = act AR v (AN

If the embedding function is a signed distance function, yielding Eq. (8), this express
for the numerical implementation of the intrinsic heat flow is simplified even further, makir
it virtually trivial.

APPENDIX C

Anisotropic Diffusion with Stopping Term on Implicit Surfaces

We have added an extra term to Eq. (10) so that the evolution stops by itself, given
estimate of the amount of noise that the original image has. The resulting PDE is

au _ 1 < PW,VU
|

— = v — AU — . 16
ot — vei . \ipe,vur! ‘”“) (U= to (16)
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Assuming Gaussian noise with known varianceon the surfaceg? = [,,_gs(U —
Uo)?8 (v)|| Vv || dx, we need then to estimate the paramgtérway to do this, as suggested
in [50], is the following. We merely multiply Eq. (16) by — ug)d(¥) ||V || and integrate
by parts over2. If the steady state has been reached, the left side of Eq. (16) vanishes,
we have

PW,VU
= Vu — ds. 17
20 2/( ||PV¢VU|| a7

This gives us a dynamic valudt).

APPENDIX D

Unit Norm Flows on Implicit Surfaces
We considewu to be data of the fornu: S — S"1. Forn = 3 we have unit vectors on
the sphereu = (u, Uy, Ug), ||| = 1.
We define the norm of the vectorial gradientonf
1
IVull = (IVuLll® + [[Vu2]l* + [ Vus|*)2,
and also the norm of the intrinsic vectorial gradient,

1
Py Vull = (I Pyy VUil + | Pyy VU ||? + || Pgy Vus|?)2.

We want to minimize the energy
1 2
Ea(u) := > I Poy VUl (W) IIVY [ dX,
QelR®
with the constraint that is of unit norm,
1 2
Es(u) := > (U= DIVl dx,
JQelR®

S0 in practice we want to minimize the eneffgyu) = Ea(u) 4+ Eg(u).
Applying to Ea(u) the method described in Appendix A,

dt

EU+tu) = /(Pqul- Py Viu)d() IV | dx
t=0 Q

+ / (Pyy YUz - Pyy Vi)s (4| V|| dx
Q

+ / (Poy VU - Poy Vig)s () V| dx,
Q

we obtain the gradient descent fap,

U 1

— = ——V - (Pyy VUi [ V¥, 18
ot = VYl (Poy VUiV (18)



VARIATIONAL PROBLEMS AND PDES 777

for each of the three componentstof
The gradient descent fdg is simply

dau;

— = —yu. 19
P Y (19)
So the composed gradient descent,EQiis
dau; 1
— = ——V . (Pyy VUi ||V —yu;. 20
ot = VYl (Poy VUi [VY D) — yui (20)

We must find the value gf. Multiplying both sides of Eq. (20) by;, making a summation
overi, and bearing in mind thau| = 1, we get

1
7 = gy SV (V¥ V). (1)

Using the equalities

UV (IV¥IPey Vui) = V- UiV [ Poy Vi) — VUi - [V || Pyy Vui,

| - A 21 A AL
Ui Pyy VUi = Ui (VUI V|12 vw) 2 (Vui V2 vw)

VUi - [V [Py VUi = VY[ VU; - Pyy VUi = [V [l Poy Vui |2
and the fact that
LVU? = V(Zu?) = V(1) =0, (22)
we finally obtain
y = —lPyy Vull?, (23)

and so the gradient descent o1is

au; 1 2
— = ——V . (Pyy, VUi ||V Ui || Pyy VU, 24
ot = oy (Pos VUIVYD + Uil Pey Vul (24)
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