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A novel framework for solving variational problems and partial differential equa-
tions for scalar and vector-valued data defined on surfaces is introduced in this paper.
The key idea is to implicitly represent the surface as the level set of a higher dimen-
sional function and to solve the surface equations in a fixed Cartesian coordinate
system using this new embedding function. The equations are then both intrinsic to
the surface and defined in the embedding space. This approach thereby eliminates the
need for performing complicated and inaccurate computations on triangulated sur-
faces, as is commonly done in the literature. We describe the framework and present
examples in computer graphics and image processing applications, including texture
synthesis, flow field visualization, and image and vector field intrinsic regularization
for data defined on 3D surfaces.c© 2001 Elsevier Science
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1. INTRODUCTION

In a number of applications, variational problems and partial differential equations need
to be intrinsically solved for data defined on arbitrary manifolds, three-dimensional surfaces
in particular. Examples of this exist in the areas of mathematical physics, fluid dynamics,
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image processing, medical imaging, computer graphics, and pattern formation. In computer
graphics, examples of this include texture synthesis [63, 67], vector field visualization [20],
and weathering [21]. In other numerous applications, data defined on surfaces often need to
be regularized, e.g., as part of a vector field computation or interpolation process [49, 64],
for inverse problems [27], or for surface parameterization [22]. These last regularization
examples can be addressed by solving a variational problem defined on the surface, or its
corresponding gradient-descent flow on the surface, using, for example, the well-developed
theory of harmonic maps [24, 25], which has recently been demonstrated to be of use for
image processing and computer graphics applications as well (e.g., [13, 22, 47, 54, 57, 69]).
All these equations are generally solved on triangulated or polygonal surfaces. That is, the
surface is given in polygonal (triangulated) form, and the data are discretely defined on it.
Solving the problems then in this representation involves the nontrivial discretization of the
equations in general polygonal grids, as well as the difficult numerical computation of other
quantities such as projections onto the discretized surface (when computing gradients and
Laplacians for example). Although the use of triangulated surfaces is extremely popular
in all areas dealing with 3D models, especially in computer graphics, there is still no
widely accepted technique for computing simple differential characteristics such as tangents,
normals, principal directions, and curvatures; see, for example, [19, 41, 60] for a few of
the approaches in this direction. On the other hand, it is widely accepted that computing
these objects for iso-surfaces (implicit representations) is straightforward and much more
accurate and robust. This problem in polygonal surfaces becomes even bigger when in
addition to computes these first- and second-order differential characteristics of the surface
we also have to use them to solve variational problems and PDEs for data defined on the
surface. Moreover, virtually no analysis of numerical PDEs on nonuniform grids exists
in the generality needed for the wide range of applications mentioned above, making it
difficult to understand the behavior of the numerical implementation and its proximity (or
lack thereof) to the continuous model.

In this paper we present a new framework for solving variational problems and PDEs for
scalar and vector-valued data defined on surfaces. We use, instead of a triangulated/polygonal
representation, an implicit representation: our surface will be the zero level set of a higher
dimensionalembeddingfunction (i.e., a 3D volume with real values, positive outside the
surface and negative inside it). Implicit surfaces have been widely used in many areas in-
cluding computational physics [43], computer graphics [7, 28, 66], and image processing
[52], as an alternative efficient representation to polygonal surfaces. We smoothly extend
the original (scalar or vector-valued) data lying on the surface to the 3D volume, adapt
our PDEs accordingly, and then perform all the computations on the fixed Cartesian grid
corresponding to the embedding function. These computations are nevertheless intrinsic
to the surface. The advantages of using the Cartesian grid instead of a triangulated mesh
are many: we can use well-studied numerical techniques, with accurate error, stability, and
robustness measures; the topology of the underlying surface is not an issue; and we can
derive simple, accurate, robust, and elegant implementations. If the original surface is not
already in implicit form, and it is for example triangulated, we can use any of a num-
ber of implicitation algorithms that achieve this representation given a triangulated input,
e.g., [23, 37, 59, 68]. For example, the public domain software [38] can be used. If the data
are just defined on the surface, an extension of them to the whole volume is also easily
achieved using a PDE, as we will later see. Therefore, the method proposed here works
as well for nonimplicit surfaces after the preprocessing is performed. This preprocessing
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is quite simple and no complicated regridding needs to be done to go from one surface
representation to another (see below). Finally, we will solve the variational problem or PDE
only in a band surrounding the zero level set (a classical approach; see [46]). Therefore,
although we will be increasing the dimension of the space by one, the computations remain
of the same complexity, while significantly improved accuracy and greater simplicity are
obtained.

1.1. The Background and Our Contribution

Representingdeformingsurfaces as level sets of higher dimensional functions was intro-
duced in [43] as a very efficient technique for numerically studying the deformation (see
[44] for a review of this technique and also [66] for studies on the deformation and manipu-
lation of implicit surfaces for graphics applications). The idea is to represent the surface
deformation via the embedding function deformation, which adds accuracy, robustness,
and, as expected, topological liberty. When the velocity of the deformation is given by the
minimization of an energy, the authors in [70] proposed a “variational level set” method,
where they extended the energy (originally defined only on the surface) to the whole space.
This allows the implementation to be made in the Cartesian grid. The key to this approach
is to go from a “surface energy” to a “volume energy” by using a Dirac’s delta function that
concentrates the penalization on the given surface.

We will follow this general direction with our fixed, nondeforming surfaces. In our case,
what is being deformed is the (scalar or vector-valued) data on the surface. If this deformation
is given by an energy-minimization problem (as is the case in data smoothing applications),
we will extend the definition of the energy to the whole 3D space, and its minimization will
be achieved with a PDE, which, despite its being intrinsic to the underlying surface, is also
defined in the whole space. Therefore, it is easily implementable. This is straightforward,
as opposed to approaches where one maps the surface data onto the plane, performs the
required operations there, and then maps the results back onto the triangulated representation
of the surface or to approaches that attempt to solve the problem directly on a polygonal
surface.

The new framework proposed here also tells us how to translate into surface terms
PDEs that we know work on the plane but which do not necessarily minimize an energy
(e.g., texture synthesis or flow visualization PDEs). Instead of running these PDEs on
the plane and then mapping the results onto a triangulated representation of the surface, or
running them directly on the triangulated domain, we obtain a 3D straightforward Cartesian
grid realization that implements the equation intrinsically on the surface and has an accuracy
that depends only on the degree of spatial resolution.

Moreover, we consider that for computing differential characteristics and solving PDEs
even for triangulated surfaces, it might be appropriate to run an implicitation algorithm
as any of the ones used for the examples in this paper and then work on the implicit
representation. Current algorithms for doing this, some of them publicly available [38], are
extremely accurate and efficient.

The contribution of this paper is therefore a new technique to efficiently solve a common
problem in many computational physics and engineering applications: the implementation
of variational problems and PDEs on 3D surfaces. In particular, we show how to transform
any intrinsic variational or PDE equation into its corresponding one for implicit surfaces. In
this paper we are then proposing a new framework to better solve existent problems and to
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help in building up the solutions for new ones. To exemplify the technique and its generality,
we implement and extend popular equations previously reported in the literature. Here we
solve them with our framework, while in the literature they were solved with elaborated
discretizations on triangulated representations.

Before proceeding, we should comment on a few of the basic characteristics of our
framework. First, as stated before, although we solve the equations in the embedding space,
the basic computational complexity of our technique is not increased, since all operations
are performed on a narrow band surrounding the given surface. Second, since the work is
now on a Cartesian grid, classical numerical analysis results on issues such as robustness
and stability apply here as well. Note that for triangulated representations, new theoretical
results are needed to justify the common methods proposed in the literature, while with our
framework, classical and well-established numerical techniques can be made as accurate,
robust, and computationally efficient as dictated by the application.

2. THE FRAMEWORK

2.1. Surface and Data Representation

As mentioned before, our approach requires us to have an implicit representation of the
given fixed surface, and the data must be defined in a band surrounding them and not just on
the surface. The implicit surfaces used in this paper have been derived from public-domain
triangulated surfaces via the computation of a (signed) distance functionψ(x, y, z) to the
surfaceS. Arriving at an implicit representation from a triangulated one is currently not a
significant issue; there are publicly available algorithms that achieve it in a very efficient
fashion. To exemplify this, in our paper we have used several of these techniques. For some
surfaces the classical Hamilton–Jacobi equation‖∇ψ‖ = 1 was solved on a predefined
grid enclosing the given surface via the computationally optimal approach devised in [61].
Accurate implicit surfaces from triangulations of the order of 106 triangles are obtained in
less than 2 min of CPU time with this technique. Alternatively, we used the implementation
of the Closest Point Transform available in [38]. The teapot and knot surfaces were obtained
from unorganized data points using the technique devised in [71]. We therefore assume
from now on that the three-dimensional surfaceS of interest is given in implicit form as
the zero level set of a given functionψ : IR3→ IR. This function is negative inside the
closed bounded region defined byS; it is positive outside and is Lipschitz continuous a.e.,
with S ≡ {x ∈ IR3 :ψ(x) = 0}. To ensure that the data, which need not be defined outside
of the surface originally, are now defined in the whole band, one simple possibility is to
extend the datau defined onS (i.e., the zero level set ofψ) in such a form that they are
constant normal to each level set ofψ . This means that the extension satisfies∇u · ∇ψ = 0.
(For simplicity, we now assumeu to be a scalar function, although we will also address
in this paper problems where the data defined onS are vector-valued. This is solved in an
analogous fashion.) To solve this we numerically search for the steady-state solution of the
Cartesian PDE

∂u

∂t
+ sign(ψ)(∇u · ∇ψ) = 0.

This technique was first proposed and used in [12]. Note that this keeps the given datau on
the zero level set ofψ (the given surface) unchanged.
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Both the implicitation and data extension (if required at all by the given data) need to be
done only once off line. Moreover, they will remain for all applications that need this type
of data.

2.2. A Simple Example: Heat Flow on Implicit Surfaces

We will exemplify our framework with the simplest case, the heat flow or Laplace equa-
tion for scalar data defined on a surface. For scalar datau defined on the plane, that is,
u(x, y) : IR2→ IR, it is well known that the heat flow

∂u

∂t
= 1u, (1)

where1 := ∂2u
∂x2 + ∂2u

∂y2 is the Laplacian, is the gradient-descent flow of the Dirichlet integral

1

2

∫
IR2
‖∇u‖2 dx dy, (2)

where∇ is the gradient.
Equation (1) performs smoothing of the scalar datau, and this smoothing process pro-

gressively decreases the energy defined in Eq. (2). If we now want to smooth scalar datau
defined on a surfaceS, we must find the minimizer of theharmonicenergy given by

1

2

∫
S
‖∇Su‖2 dS. (3)

The equation that minimizes this energy is its gradient-descent flow:

∂u

∂t
= 1Su. (4)

Here∇S is the intrinsic gradient and1S is the intrinsic Laplacian or Laplace–Beltrami
operator. These are classical concepts in differential geometry and basically mean the natural
extensions of the gradient and Laplacian respectively, considering all derivatives intrinsic to
the surface (with the natural metric). For instance, the intrinsic gradient is just the projection
onto S of the regular 3D gradient while the Laplace–Beltrami operator is the projected
divergence of it [53].

Classically, Eq. (4) would be implemented in a triangulated surface, giving rise to so-
phisticated and elaborated algorithms even for such simple flows. We now show how to
simplify this when considering implicit representations.

Recall thatS is given as the zero level set of a functionψ : IR3→ IR;ψ is negative
inside the region bounded byS and is positive outside withS ≡ {x ∈ IR3 :ψ(x) = 0}. We
proceed now to redefine the above energy and compute its corresponding gradient descent
flow. Let v be a generic three-dimensional vector and letPv be the operator that projects a
given three-dimensional vector onto the plane orthogonal tov:

Pv := I − v⊗ v
‖v‖2 . (5)
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It is then easy to show that the harmonic energy (3) is equivalent to (see, for example,
[53])

1

2

∫
S
‖PN ∇ u‖2 dS, (6)

whereN is the normal to the surfaceS. In other words,∇Su = PN∇u. That is, the gradient
intrinsic to the surface (∇S ) is just the projection onto the surface of the 3D Cartesian
(classical) gradient∇.1 We now embed this in the functionψ to get

1

2

∫
S
‖∇Su‖2 dS = 1

2

∫
S
‖PN∇u‖2 dS = 1

2

∫
Ä∈IR3
‖P∇ψ∇u‖2δ(ψ)‖∇ψ‖ dx,

whereδ(·) stands for the Dirac delta function, and all the expressions above are considered
in the sense of distributions. Note that first we got rid of intrinsic derivatives by replacing
∇S by PN∇u (or P∇ψ∇u) and then we replaced the intrinsic integration (

∫
S dS) by the

explicit one (
∫
Ä∈IR3 dx) using the delta function. Intuitively, although the energy lives in

the full space, the delta function forces the penalty to be effective only on the level set of
interest. The last equality includes the embedding, and it is based on the following simple
facts:

1. ∇ψ ‖N.
2.
∫
Ä
δ(ψ) ‖∇ψ‖ dx = ∫S dS = surface area.

In Appendix A we show that the gradient descent of this energy is given by

∂u

∂t
= 1

‖∇ψ‖∇ · (P∇ψ∇u‖∇ψ‖). (7)

In other words, this equation corresponds to the intrinsic heat flow or Laplace–Beltrami
for data on an implicit surface. But all the gradients in this PDE are defined in the three-
dimensional Cartesian space, not in the surfaceS (this is why we need the data to be defined
at least on a band around the surface). The numerical implementation is then straightforward.
This is the beauty of the approach! Basically, for this equation we use a classical scheme of
forward differences in time and a succession of forward and backward differences in space
(see Appendix B for details). The other equations in this paper are similarly implemented.
This follows techniques such as those in [50]. Once again, due to the implicit representation
and embedding in a Cartesian grid, classic numerical techniques are used, avoiding elaborate
projections onto discrete surfaces and discretization on general meshes, e.g., [19, 32].
Classical numerical approaches and theoretical findings on robustness, accuracy, and error
bounds apply then for our framework.

It is easy to show a number of important properties of this equation:

1. For any second embedding functionφ = φ(ψ), with φ(0) = 0 andφ′ 6= 0, we obtain
the same gradient descent flow. Since bothψ andφ have to share the zero level set, and we
are only interested in the flow around this zero level set, this means that the flow is (locally)
independent of the embedding function.2

1 Note that, using this fact, we have transformed the computation of the norm of the intrinsic 2D gradient into
an equivalent 3D Euclidean computation.

2 We thank F. Mémoli for helping with this fact.
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2. If ψ is the signed distance function, a very popular implicit representation of sur-
faces (obtained, for example, from the implicitation algorithms previously mentioned), the
gradient descent simplifies to

∂u

∂t
= ∇ · (P∇ψ∇u). (8)

We have then obtained the basic approach for embedding intrinsic variational problems.
We proceed now to embed general PDEs.

2.3. From Variational Problems to PDEs

We note that we could also have derived Eq. (7) directly from the harmonic maps flow,

∂u

∂t
= 1Su,

via the simple geometry exercise of computing the Laplace–Beltrami1Su for S in implicit
form (this is simply done by means of the projected derivatives as explained above, e.g.,
[53]). That is, the same equation is obtained when embedding the energy and then com-
puting the gradient descent and when first looking at the gradient descent followed by the
embedding of all of its components. This property is of particular significance. It basically
hints at how to solve other PDEs, not necessarily gradient-descent flows, for data defined
on implicit surfaces. All that we need to do is to recompute the components of the PDE for
implicit representations of the surface. Note that in this way, conceptually, we can redefine
classical planar PDEs on implicit surfaces, making them both intrinsic to the underlying
surface and defined on the whole space.

2.4. Anisotropic Diffusion on Implicit Surfaces

From this very simple example on the Laplace–Beltrami flow we have seen the key point
of our approach. If the process that we want to implement comes from the minimization
of an energy, we derive a PDE for the whole space by computing the gradient-descent of
the whole-space extension of that energy. Otherwise, given a planar PDE we recompute its
components for an implicit representation of the surface. For instance, anisotropic diffusion
can be performed on the plane by

∂u

∂t
= ∇ ·

( ∇u

‖∇u‖
)
, (9)

which minimizes the TV energy
∫

IR2 ‖∇u‖ dx dy (see [50] and also [2, 6, 48] for related
formulations). If we now want to perform intrinsic anisotropic diffusion of scalar data on
a surfaceS, we can either recompute the gradient-descent flow for the intrinsic TV energy∫
S ‖∇Su‖ dS, which forS in implicit form becomes

∫
Ä∈IR3 ‖P∇ψ∇u‖δ(ψ)‖∇ψ‖ dx, or just

substitute into Eq. (9) the corresponding expressions as explained in the previous section.
Either way we obtain the same result,

∂u

∂t
= 1

‖∇ψ‖∇ ·
(

P∇ψ∇u

‖P∇ψ∇u‖‖∇ψ‖
)
, (10)
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which is valid in the embedding Euclidean space. Note that generalp-harmonic maps, that
is, maps forL p, p 6= 2, norms of the intrinsic surface gradient, have been studied in the
literature as well, e.g., [13, 17, 29, 31, 57]. In the following section additional equations
will be presented.

3. EXPERIMENTAL EXAMPLES

We now exemplify the framework just introduced for a number of important cases. The
numerical implementation used is quite simple and requires a few lines ofC++ code. The
CPU time required for the diffusion examples is a few seconds on a PC (512 Mb RAM,
1 GHz) under Linux. For the texture synthesis examples, the CPU time ranges from a few
minutes to one hour, depending on the pattern and parameters chosen. All the volumes
used contain roughly 1283 voxels. Note once again that due to the use of only a narrow
band surrounding the zero level set, the order of the algorithmic complexity remains the
same. On the other hand, the use of straightforward Cartesian numerics reduces the overall
algorithmic complexity, improving accuracy and simplifying the implementation.

3.1. Diffusion of Scalar Images on Surfaces

The use of PDEs for image enhancement has become one of the most active research
areas in image processing [11, 52]. In particular, diffusion equations are commonly used
for image regularization, denoising, and multiscale representations (representing the image
simultaneously at several scales or levels of resolution). This started with the works in
[36, 65], where the authors suggested the use of the linear heat flow (1) for this task, where
u represents the image gray values (the original image is used as initial condition). Note of
course that this is the basic regularization needed for inverse problems defined on surfaces,
e.g., [27]. By deriving the heat flow or Laplace–Beltrami equation on implicit surfaces
we then derive the basic PDE used for image processing as well as the fundamental data
regularization energy/flow. As we have seen, this flow is the gradient descent of (2), and
the generalizations of these equations for data on the surface are given by (4) and (3)
respectively. In implicit form, the heat flow on surfaces is given by (7). Figure 1 shows a
simple example of image diffusion on a surface. Please note that this isnot equivalent to
performing 3D smoothing of the data and then looking to see what happened onS. Our
flow, though using extended 3D data, performs smoothingdirectlyon the surface and is an

FIG. 1. Intrinsic isotropic diffusion. Left: original image. Middle: after 15 diffusion steps. Right: after
50 diffusion steps.
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FIG. 2. Intrinsic anisotropic diffusion with constraints (automatic stop term). Left: original noisy image.
Middle: after 50 diffusion steps. Right: after 90 diffusion steps. Notice how the diffusion stops and information is
not smeared.

intrinsic heat flow (Laplace–Beltrami on the surface and not Laplace on the 3D space). The
complete details of the numerical implementation of this flow are given in Appendix B (this
will once again show how the implementation is significantly simplified with the framework
described here).

In Fig. 2 we show an example for the anisotropic flow (10). In this case, we have a noisy
image with known variance. We can then easily add this constraint to the flow and the cor-
responding variational formulation. The energy corresponding to this constraint is given by

λ

2

∫
S
(u− u0)

2 dS

(λ ∈ IR is a parameter andu0 is the given noisy image), which after it is made intrinsic and
implicit becomes

λ

2

∫
IR3
(u− u0)

2δ(ψ) ‖∇ψ‖ dx.

To incorporate the constraint on the noise variance into the diffusion/denoising process, we
add to the flow (10) the corresponding Euler–Lagrange of this energy, given by

λ(u− u0).

Note in the figure how the noise is removed while the image details are preserved, as ex-
pected from an anisotropic flow. The parameterλ is estimated extending the technique
suggested in [50] (see Appendix C).

The same approach, that of anisotropic diffusion with a stopping term given by the
constraint, may be used to perform intrinsicdeblurring; see [15].

We should note before proceeding that [35] also showed how to regularize images defined
on a surface. The author’s approach is limited to graphs (not generic surfaces) and only
applies to level set based motions. The approach is simply to project the deformation of the
data on the surface onto a deformation on the plane.

3.2. Diffusion of Directional Data on Surfaces

A particularly interesting example is obtained when we have unit vectors defined on the
surface. That is, we have data of the formu :S → Sn−1. Whenn = 3 our unit vectors lie on
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the sphere. Examples of this sort of data include principal directions (or general directional
fields on 3D surfaces) and chromaticity vectors (normalized RGB vectors) for color images
defined on the surface. This is also one of the most studied cases of the theory of harmonic
maps due to its physical relationship with liquid crystals, and it was introduced in [57]
for the regularization of directional data unit vectors on the plane (see also [13, 47, 54]).
This framework of harmonic maps was used in computer graphics for texture mapping and
surface parameterization, as pointed out earlier.

We still want to minimize an energy of the form∫
S
‖∇Su‖p dS,

though in this case∇S is the vectorial gradient and the minimizer is restricted to be a unit
vector. It is easy to show, e.g., [8, 55] that the gradient descent of this energy is given by
the coupled system of PDEs

∂ui

∂t
= divS(‖∇Su‖p−2∇Sui )+ ui ‖∇Su‖p, 1≤ i ≤ n.

This flow guarantees that the initial unit vectoru(x, y, z, 0) remains a unit vectoru(x, y, z, t)
all the time, thereby providing an equation for isotropic (p = 2) and anisotropic (p = 1)
diffusion and regularization of unit vectors on a surface.

We can now proceed as before and embed the surfaceS into the zero level set ofψ ,
obtaining the following gradient-descent flows (see Appendix D):

∂ui

∂t
= 1

‖∇ψ‖∇ ·
(

P∇ψ∇ui

‖P∇ψ∇u‖2−p
‖∇ψ‖

)
+ ui ‖P∇ψ∇u‖p. (11)

Note once again that although the regularization is done intrinsically on the surface, this
equation only contains Cartesian gradients. An example of this flow for anisotropic diffusion
of principal direction vectors is given in Fig. 3. On the top, we see the surface of a bunny
with its correspondent vector field for the major principal direction. Any irregularity on
the surface produces a noticeable alteration of this field, as can be seen in the details a
and b. In the details a′ and b′, we see the result of applying the flow (11). Once again, the
implementation of this flow with our framework is straightforward, while it would require
very sophisticated techniques on triangulated surfaces (techniques that, in addition, are not
supported by theoretical results).

Following also the work [57, 58] for color images defined on the plane, we show in
Fig. 4 how to denoise a color image painted on an implicit surface. The basic idea is to
normalize the RGB vector (a three-dimensional vector) to a unit vector representing the
chroma and to diffuse this unit vector with the harmonic maps flow (11).3 The corresponding
magnitude, representing the brightness, is smoothed separately via scalar diffusion flows as
those presented before (e.g., the intrinsic heat flow or the intrinsic anisotropic heat flow).
That is, we have to regularize a map ontoS2 (the chroma) and another one ontoIR (the
brightness).

3 We renormalize at every discrete step of the numerical evolution to address deviations from the unit norm due
to numerical errors [16]. We could also extend the framework in [1] and apply it to our equations.
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FIG. 3. Intrinsic vector field regularization. Top: original field of major principal direction of the surface.
Detailsa andb: original field. Detailsa′ andb′: after anisotropic regularization.

3.3. Pattern Formation on Surfaces via Reaction–Diffusion Flows

The use of reaction–diffusion equations for texture synthesis became very popular in
computer graphics following the works of Turk [63] and Witkin and Kass [67]. These works
follow original ideas by Turing [62], who showed how reaction–diffusion equations can be
used to generate patterns. The basic idea in these models is to have a number of “chemicals”
that diffuse at different rates and that react with each other. The pattern is then synthesized
by assigning a brightness value to the concentration of one of the chemicals. The authors in
[63, 67] used their equations for planar textures and textures on triangulated surfaces. By
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FIG. 4. Intrinsic vector field regularization. Top: original color image. Middle: heavy noise has been added to
the three color channels. Bottom: color image reconstructed after 20 steps of anisotropic diffusion of the chroma
vectors. Please see the journal website to view the color image.

using the framework described here, we can simply create textures on (implicit/implicitized)
surfaces, without the elaborated schemes developed in those papers.4

Assuming a simple isotropic model with just two chemicalsu1 andu2, we have

∂u1

∂t
= F(u1, u2)+ D11u1,

∂u2

∂t
= G(u1, u2)+ D21u1,

4 Note that this is not the scheme proposed in [45], where the texture is created in the full 3D space. Here, the
texture is created via reaction–diffusion flows intrinsic to the surface, whereas just the implementation is on the
embedding 3D space.
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FIG. 5. Texture synthesis via intrinsic reaction–diffusion flows on implicit surfaces. Top: isotropic. Bottom:
anisotropic. Pseudo-color representation of scalar data is used. The numerical values used in the computations
wereD1 = 1.0, D2 = 0.0625, s= 0.025, β = 12.0± 0.1, andu1(0) = u2(0) = 4.0.

whereD1 and D2 are two constants representing the diffusion rates andF andG are the
functions that model the reaction.

Introducing our framework, ifu1 andu2 are defined on a surfaceS implicitly represented
as the zero level set ofψ we have

∂u1

∂t
= F(u1, u2)+ D1

1

‖∇ψ‖∇ · (P∇ψ∇u1‖∇ψ‖), (12)

∂u2

∂t
= G(u1, u2)+ D2

1

‖∇ψ‖∇ · (P∇ψ∇u2‖∇ψ‖). (13)
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For simple isotropic patterns, Turk [63] selected

F(u1, u2) = s(16− u1u2),

G(u1, u2) = s(u1u2− u2− β),

wheres is a constant andβ is a random function representing irregularities in the chemical
concentration. Examples of this, for implicit surfaces, are given in Fig. 5 (the coupled PDEs
shown above are run until steady state is achieved). To simulate anisotropic textures, instead
of using additional chemicals as in [63], we use anisotropic diffusion, as suggested in [67].
For this purpose, we replace Eq. (12) with

∂u1

∂t
= F(u1, u2)+ D1

1

‖∇ψ‖∇ · ((d · P∇ψ∇u1)d ‖∇ψ‖), (14)

whered is a vector field tangent to the surface, e.g., the field of the major principal direction
(which for our examples has been also accurately computed directly on the implicit surface,
using the technique proposed in [40]). Note how this particular selection of the anisotropic
reaction–diffusion flow direction provides a texture that helps the shape perception of the
object. Additional patterns can be obtained with different combinations of the reaction and
diffusion parts of the flow.

3.4. Flow Visualization on 3D Surfaces

Inspired by the work on line integral convolution [9] and that on anisotropic diffusion
[48], the authors of [20] suggested using anisotropic diffusion to visualize flows in two
and three dimensions. The basic idea is, starting from a random image, one anisotropically
diffuses it in the directions dictated by the flow field. The authors presented very nice results
both in two dimensions (flows on the plane) and three dimensions (flows on a surface), but
once again using triangulated surfaces which introduce many computational difficulties.

FIG. 6. Flow visualization on implicit 3D surfaces via intrinsic anisotropic diffusion flows. Left: flow aligned
with the major principal direction of the surface. Right: flow aligned with the minor principal direction of the
surface. Pseudo-color representation of scalar data is used.
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In a straightforward fashion we can compute these anisotropic diffusion equations on the
implicit surfaces with the framework introduced here, and some results are presented in
Fig. 6. Note the complicated topology and how both the inside and outside parts of the
surfaces are easily handled with our implicit approach. Also note that, when we choose
the vector field to be that of one of the principal directions, the result emphasizes the
surface shape.

4. CONCLUDING REMARKS

In this paper, we have introduced a novel framework for solving variational problems
and PDEs for data defined on surfaces. The technique borrows ideas from the level set
theory and the theory of intrinsic flows via harmonic maps. The surface is embedded
in a higher dimensional function, and the Euler–Lagrange flow or PDE is solved in the
Cartesian coordinate system of this embedding function. The equations are simultaneously
intrinsic to the implicit surface and defined on the embedding Cartesian space. With this
framework we enjoy accuracy, robustness, and simplicity, as expected from the computation
of differential characteristics on iso-surfaces (implicit surfaces) and the use of classical and
well-established numerical techniques in Cartesian grids. In addition to presenting the
general approach, we have exemplified it with equations arising in image processing and
computer graphics.

We believe that this new framework opens up a large number of theoretical and practical
questions. In the theoretical arena, we need to extend the large amount of results available for
harmonic maps (see, for example, [57] for a review on this) to the “implicit harmonic maps”
equations introduced here. We would also like to investigate the effect of perturbations on the
surface (zero level set) on the solutions of the intrinsic PDE. This is crucial to understanding
the desired accuracy of surface implicitation algorithms. We expect that, as with the level
set theory (e.g., [14, 26]), these theoretical results will follow after the presentation of the
framework in this paper. On the practical side, we are currently addressing other related
equations that appear in the mathematical physics, image processing, and computer graphics
literature. For example, we are investigating how to extend the use of harmonic maps for
texture mapping (and not just texture synthesis). This was done for triangulated surfaces
in [3, 22, 30], and we plan to extend this to implicit surfaces via the implicit framework
introduced here. We are also interested in investigating threshold dynamics and convolution-
generated motions [34, 42, 51] for implicit surfaces. Other PDEs, such as those for image
inpainting [4] or image segmentation [10], can be extended to work on implicit surfaces
following the theory introduced here, and we would expect the same quality of results that
were obtained on the plane. We could also use this framework to experimentally study
results as those in [33]. Finally, the use of the approach presented here for regularization
in inverse problems, e.g., [27], is of interest as well. These issues will be reported on
elsewhere.

In conclusion, we should note that it is natural to ask about the target manifold for the
most general form of harmonic maps, when this target is not just the Euclidean space or
a unit ball, but a general hypersurface. In [39] we have shown how to extend the frame-
work introduced here to arbitraryimplicit target surfaces. Note also that general motion
of curves on implicit surfaces is studied in [5, 15]. These works, together with the one
here presented, provide then the basic framework for solving generic PDEs on implicit
surfaces.
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APPENDIX A

Heat Flow on Implicit Surfaces

Considering

E(u) := 1

2

∫
Ä∈IR3
‖P∇ψ∇u‖2δ(ψ)‖∇ψ‖ dx,

and withµ a perturbation ofu, we have

d

dt

∣∣∣∣
t=0

E(u+ tµ) =
∫
Ä

(P∇ψ∇u · P∇ψ∇µ)δ(ψ)‖∇ψ‖ dx

=
∫
Ä

(
P∇ψ∇u ·

(
∇µ− ∇ψ · ∇µ‖∇ψ‖2 ∇ψ

))
δ(ψ)‖∇ψ‖ dx

=
∫
Ä

(P∇ψ∇u · ∇µ)δ(ψ)‖∇ψ‖ dx

−
∫
Ä

(P∇ψ∇u · ∇ψ)∇ψ · ∇µ‖∇ψ‖2 δ(ψ)‖∇ψ‖ dx

=
∫
Ä

(P∇ψ∇u · ∇µ)δ(ψ)‖∇ψ‖ dx

= −
∫
Ä

∇ · (P∇ψ∇uδ(ψ)‖∇ψ‖)µ dx

= −
∫
Ä

∇ · (P∇ψ∇u‖∇ψ‖)δ(ψ)µ dx

−
∫
Ä

(P∇ψ∇u · ∇ψ)δ′(ψ)‖∇ψ‖µ dx

= −
∫
Ä

∇ · (P∇ψ∇u‖∇ψ‖)δ(ψ)µ dx

= −
∫
S≡{ψ=0}

1

‖∇ψ‖∇ · (P∇ψ∇u‖∇ψ‖)µ dS.

Since this expression has to be zero for allµ, we conclude that at the zero level set ofψ ,

1

‖∇ψ‖∇ · (P∇ψ∇u‖∇ψ‖) = 0,

and we make a natural extension to the whole domainÄ by considering this to hold on it.5

We then obtain the gradient descent for the “implicit harmonic energy”:

∂u

∂t
= 1

‖∇ψ‖∇ · (P∇ψ∇u‖∇ψ‖). (15)

5 We have assumed that‖∇ψ‖ 6= 0, at least on a band surrounding the zero level set. This assumption is valid
since we can make the embedding function a distance function (‖∇ψ‖ = 1), or we can simply multiplyψ by
another function that guarantees that the zero level setS is preserved and that the gradient of the new embedding
function is not zero.
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APPENDIX B

Numerical Implementation of the Heat Flow on Implicit Surfaces

We now provide details on the numerical implementation of the intrinsic heat flow on
implicit surfaces. All other equations reported in this paper are similarly implemented.
Recall that all equations are on Cartesian grids, thereby permitting the use of classical
numerics. We work on a cubic grid (1x = 1y = 1z= 1), using an explicit scheme, where
we compute the value ofun

i, j,k = u(i1x, j1y, k1z, n1t) based only on previous values
(t = (n− 1)1t) of its neighbors, i.e., forward time differences.

First, we compute the 3D gradient ofu using forward differences:

vn
i, j,k = ∇+un

i, j,k =
(
un

i+1, j,k − un
i, j,k, u

n
i, j+1,k − un

i, j,k, u
n
i, j,k+1− un

i, j,k

)
.

We compute the vectorN(i, j, k), which gives the direction of the (outward) normal to
the isosurface ofψ at the point(i, j, k):

Ni, j,k = ∇ψi, j,k = 1

2
(ψi+1, j,k − ψi−1, j,k, ψi, j+1,k − ψi, j−1,k, ψi, j,k+1− ψi, j,k−1).

Here we have used central differences. Note that, sinceψ is fixed,N(i, j, k) does not
change in time and we need only to compute it once. Its norm is‖Ni, j,k‖ = (

∑3
m=1(Ni, j,k

[m])2)
1
2 . The square brackets denote the components of the vector. Then we compute the

intrinsic gradient, i.e., we project∇u onto the plane normal toN:

(PNv)ni, j,k = vn
i, j,k −

(∑3
m=1 Ni, j,k[m] · vi, j,k[m]

‖Ni, j,k‖2
)

Ni, j,k.

Finally, we use a backward-differences implementation of the divergence:

∇−wi, j,k = wi, j,k[1] − wi−1, j,k[1] + wi, j,k[2] − wi, j−1,k[2] + wi, j,k[3] − wi, j,k−1[3].

With forward time differences, the numerical implementation of the heat flow on implicit
surfaces (Eq. (7)) is then

un+1
i, j,k = un

i, j,k +1t

[
1

‖Ni, j,k‖∇− ·
(
(PNv)ni, j,k‖Ni, j,k‖

)]
.

If the embedding function is a signed distance function, yielding Eq. (8), this expression
for the numerical implementation of the intrinsic heat flow is simplified even further, making
it virtually trivial.

APPENDIX C

Anisotropic Diffusion with Stopping Term on Implicit Surfaces

We have added an extra term to Eq. (10) so that the evolution stops by itself, given an
estimate of the amount of noise that the original image has. The resulting PDE is

∂u

∂t
= 1

‖∇ψ‖∇ ·
(

P∇ψ∇u

‖P∇ψ∇u‖‖∇ψ‖
)
− λ(u− u0). (16)
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Assuming Gaussian noise with known varianceσ 2 on the surface,σ 2 = ∫
Ä∈IR3(u−

u0)
2δ(ψ)‖∇ψ‖ dx, we need then to estimate the parameterλ. A way to do this, as suggested

in [50], is the following. We merely multiply Eq. (16) by(u− u0)δ(ψ)‖∇ψ‖ and integrate
by parts overÄ. If the steady state has been reached, the left side of Eq. (16) vanishes, and
we have

λ = − 1

2σ 2

∫
S
(∇u−∇u0) · P∇ψ∇u

‖P∇ψ∇u‖ dS. (17)

This gives us a dynamic valueλ(t).

APPENDIX D

Unit Norm Flows on Implicit Surfaces

We consideru to be data of the formu :S → Sn−1. For n = 3 we have unit vectors on
the sphere:u = (u1, u2, u3), ‖u‖ = 1.

We define the norm of the vectorial gradient ofu,

‖∇u‖ = (‖∇u1‖2+ ‖∇u2‖2+ ‖∇u3‖2) 1
2 ,

and also the norm of the intrinsic vectorial gradient,

‖P∇ψ∇u‖ = (‖P∇ψ∇u1‖2+ ‖P∇ψ∇u2‖2+ ‖P∇ψ∇u3‖2) 1
2 .

We want to minimize the energy

EA(u) := 1

2

∫
Ä∈IR3
‖P∇ψ∇u‖2δ(ψ)‖∇ψ‖ dx,

with the constraint thatu is of unit norm,

EB(u) := 1

2
γ

∫
Ä∈IR3

(u2− 1)δ(ψ)‖∇ψ‖ dx,

so in practice we want to minimize the energyE(u) = EA(u)+ EB(u).
Applying to EA(u) the method described in Appendix A,

d

dt

∣∣∣∣
t=0

E(u+ tµ) =
∫
Ä

(P∇ψ∇u1 · P∇ψ∇µ1)δ(ψ)‖∇ψ‖ dx

+
∫
Ä

(P∇ψ∇u2 · P∇ψ∇µ2)δ(ψ)‖∇ψ‖ dx

+
∫
Ä

(P∇ψ∇u3 · P∇ψ∇µ3)δ(ψ)‖∇ψ‖ dx,

we obtain the gradient descent forEA,

∂ui

∂t
= 1

‖∇ψ‖∇ · (P∇ψ∇ui ‖∇ψ‖), (18)
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for each of the three components ofu.
The gradient descent forEB is simply

∂ui

∂t
= −γu. (19)

So the composed gradient descent, forE, is

∂ui

∂t
= 1

‖∇ψ‖∇ · (P∇ψ∇ui ‖∇ψ‖)− γui . (20)

We must find the value ofγ . Multiplying both sides of Eq. (20) byui , making a summation
over i , and bearing in mind that‖u‖ = 1, we get

γ = 1

‖∇ψ‖6ui∇ · (‖∇ψ‖P∇ψ∇ui ). (21)

Using the equalities

ui∇ · (‖∇ψ‖P∇ψ∇ui ) = ∇ · (ui ‖∇ψ‖P∇ψ∇ui )−∇ui · ‖∇ψ‖P∇ψ∇ui ,

ui P∇ψ∇ui = ui

(
∇ui − ∇ψ∇ui

‖∇ψ‖2 ∇ψ
)
= 1

2

(
∇u2

i −
∇ψ∇u2

i

‖∇ψ‖2 ∇ψ
)

∇ui · ‖∇ψ‖P∇ψ∇ui = ‖∇ψ‖∇ui · P∇ψ∇ui = ‖∇ψ‖‖P∇ψ∇ui ‖2

and the fact that

6∇u2
i = ∇

(
6u2

i

) = ∇(1) = 0, (22)

we finally obtain

γ = −‖P∇ψ∇u‖2, (23)

and so the gradient descent forE is

∂ui

∂t
= 1

‖∇ψ‖∇ · (P∇ψ∇ui ‖∇ψ‖)+ ui ‖P∇ψ∇u‖2. (24)
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